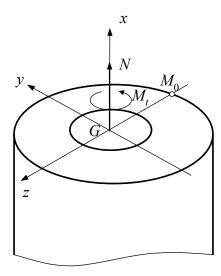

Problème 1 : Un cylindre creux en acier de longueur ℓ et de diamètre extérieur D_e et intérieur $D_i = \lambda D_e$ est soumis à un moment de torsion M_t . Calculer D_e et λ de façon que la contrainte de cisaillement maximale et l'angle de torsion aient les valeurs τ_{max} et φ données d'avance.

Application : $M_t = 19.5$ kNm, $\ell = 1.8$ m, $\tau_{\text{max}} = 250$ MPa, $\varphi = 7^{\circ}$

Problème 2: La section d'un arbre de machine représentée ci-contre est soumise à un moment de torsion. Calculer l'effort normal de traction N qu'elle peut supporter en plus, de façon que la contrainte tangentielle maximum en un point M_0 de la circonférence extérieure soit égale à la moitié de la limite élastique ($\tau_{\text{max}} = \frac{1}{2} \sigma_e$). Calculer dans ce cas les contraintes principales.

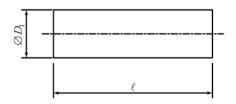
Application:

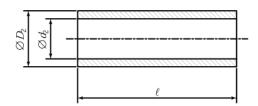
Ac 70


 $M_t = 18 \text{ kNm}$

D = 120 mm

 $d = \alpha D$


 $\alpha = 0.8$


 $\sigma_e = 360 \text{ MPa}$

Problème 3: Les deux arbres représentés ci-dessous, usinés dans un même matériau, doivent transmettre un même moment de torsion M_t en subissant une même contrainte de cisaillement maximum τ_{max} . Avec $D_1 = 15$ cm et $D_2 = 18$ cm, calculer:

- le diamètre intérieur d_2 du cylindre creux,
- le rapport φ_2/φ_1 des angles de torsion, et
- le rapport m_2/m_1 des masses des deux cylindres.

